TABLE I: SUBSTITUTED ETHYLENEDIAMINES IV

 \textdegree Decompd during distn. \textdegree All HCl salts were analyzed for C, H, N, Cl, and the anal. results were within $\pm 0.4\%$ of the theoretical values. \circ A, MeOH; B, EtOH; C, EtOH-Et₂O.

dures.¹⁸ In these, 1,4-piperazinedicarboxylic acid Et ester is invariably formed along with 1-piperazinecarboxylie acid Et ester. Further the methods are tedious and work-up is difficult. In the present procedure, formation of the disubstituted product has been totally avoided. 1-Piperazinecarboxaldehyde¹⁹ is first converted to 4-formyl-1-piperazinecarboxylic acid Et ester²⁰ which on hydrolysis with NaOH (10%) for 4 hr gave 1-piperazinecarboxylic acid Et ester in 85-90% yield.

Substituted Ethylenediamines IV.—Amixt of $4-(\beta$ -chloroethyl)-1-piperazinecarboxylic acid Et ester'HC1 (0.05 mole), the appropriate secondary amine (0.05 mole), anhyd K_2CO_3 (0.05 mole), and abs EtOH (50 ml) was refluxed for about 6 hr, and the solvent was removed by distn. The residual material was treated with H_2O and the aq soln after basification with 50% NaOH soln to pH 9 was extd with Et_2O The ext was dried (Na_2SO_4) and concd to afford the desired product as liq which was distd *in vacuo.* In all cases the viscous liquids finally obtd were converted into the corresponding hydrochlorides by passing dry HC1 through an $Et₂O$ soln. All compds were characterized as their hydrochlorides. Only 6 (see Table I) gave an anal, pure sample of the base on crystn from petr ether (bp 60-80°). The characteristics of IV have been recorded in Table I.

Acknowledgment.—The authors wish to thank the Council of Scientific and Industrial Research, New Delhi, for the award of a research grant to carry out this investigation. Thanks are also due to the authorities of the Bengal Immunity Research Institute, Calcutta-17, where the major portion of the work was carried out.

(18) (a) T. 8. Moore, M. Boyle, V. M. Thorn, *J. Chem. Soc,* 39, (1929); (b) H. K. Hall, Jr., *J. Amer. Chem. Soc,* 78, 2570 (1956); (c) K. R. Jacobi, *Ber.,* B66, 113 (1933).

(19) K. Fujii, K. Tomino, and H. Watanabe, *Yakagaku Zasshi,* 74, 1049 (1954).

(20) (a) W. Logemann, D. Artini, and G. Tosolini, *Chem. Ber.,* 91, 2566 (1958); (b) conversion of 1-piperazinecarboxaldehyde to 4-formyl-l-piperazinecarboxalic acid Et ester is more advantageous than to convert 1-piperazinecarboxalic acid Et ester to 4-formyl-l-piperazinecarboxalic acid Et ester according to the method of Logemann, *et* al.2oa

Optical Isomer s of Mepivacaine and Bupivacaine

BENJAMIN F. TULLAR

Sterling-Winthrop Research Institute, Rensselaer, New York 12144

Received March 2, 1971

Current interest in the potent local anesthetics mepivacaine and bupivacaine— N -methyl and N -butyl derivatives of (\pm) -2',6'-pipecoloxylidide—(I) prompted us to prepare and study the optical isomers. The parent (\pm) -I was resolved using dibenzoyl $(+)$ -tartaric acid. Mepivacaine was resolved by crystallization of

its quinic acid salts.¹ Although a number of optically active acids were tried as resolving agents for (\pm) bupivacaine, no separation of the isomers could be effected until seed crystals were made available by Xbutylation of $(-)$ -I and crystallization of its salt with $(+)$ -tartaric acid.

An observation that $(+)$ -mepivacaine HCl and $(-)$ -bupivacaine HCl were significantly longer acting than their enantiomers has been reported in an earlier publication from this laboratory.² Thus it became of interest to establish their configuration. This was accomplished by preparing from $(R)-(+)$ -methyl pipecolate³ and 2,6-xylidinomagnesium bromide⁴ the parent $(R)-(-1)$ -I identical with $(-)$ -I by resolution of (\pm) -I. N-Butylation of a sample of this (R) -I gave $(R)-(+)$ -bupivacaine and N-methylation of $(S)-I$ (obtained from resolution of (\pm) -I) gave (S) - $(+)$ mepivacaine. Thus, the longer-acting $(+)$ -mepivacaine and $(-)$ -bupivacaine isomers are both of the (S) configuration.

Experimental Section

Resolution of 2',6'-Pipecoloxylidide (I).—To a soln of 42.0 g (0.15 mole) of (\pm) -I in 300 ml of boiling *i*-PrOH was added a soln of 38.0 g (0.10 mole) of dibenzoyl $(+)$ -tartaric acid monohydrate (DBT) in 300 ml of boiling i-PrOH. Immediate crystn occurred which was completed by slow stirring while the mixt cooled to 35°. The ppt was collected, washed with i-PrOH, and dried at 70° to give 32 g of $(+)$ -base DBT salt, mp 186-189°. This crop was converted to base by suspending in 300 ml each of $H₂O$ and Et₂O and adding 8 ml of 28% NH₄OH. The Et₂O layer was sepd, washed with H₂O, and concd in vacuo. The residue was crystd from boiling hexane to give a 12.0-g first crop of the base, mp 130-132°, $[\alpha]^{25}D + 46.1^{\circ}$ (c 2.3, 1 N HCl). This rotation was unchanged after recrystn from i-PrOAc.

The resoln liquor was evapd *in vacuo,* and the residual crude $(-)$ -base DBT salt was converted to base as above and recrystd twice from boiling hexane to give 11.1 g of base, mp 130-132°, $[\alpha]^{25}D - 46.8^{\circ}$ (c 2.3, 1 N HCl), $[\alpha]^{25}D -11.04$ (c 5, MeOH).

Resolution of (\pm) -Mepivacaine.—A soln of 46.0 g (0.186 mole) of (\pm) -mepivacaine (mp 149-151°) with 38.4 g (0.2 mole) of quinic acid (Freas Bros.) and 400 ml of abs EtOH was seeded at 60° and stirred and cooled to 25° . The cryst ppt was collected and recrystd from 300 ml of 95% EtOH to give 34 g of (+)-base quinate, mp $192-195^\circ$. This salt was dissolved in 300 ml of H_2O and basified slowly with NH4OH while rubbing and stirring to induce crystn. The pptd base was collected, washed with H_2O ,

(4) Thuresson and Egner, U.S. Patent 2,799,679. These authors used the Bodraux reaction to prepare several racemic 2,6-xylidides.

⁽¹⁾ B. T, Ekenstam, B. von Egner, and G. Petterson, *Acta Chem. Scand.,* 11, 1183 (1957), who resolved mepivacaine "with the aid of tartaric acid" but gave no details.

⁽²⁾ F. P. Luduena, *Annu. Rev. Pharmacol.,* 9, 503 (1969).

⁽³⁾ P. S. Portoghese, T. L. Pazdernik, W. L. Kuhn, G. Hite, and A. Shaft'ee, *J. Med. Chem.,* 11, 12 (1968).

and dried at 70° to give 19.0 g of nearly pure base. A 1-g portion recrystd from *i*-PrOAc melted at 153-155°, $[\alpha]^{25}D -63^{\circ}$ (c 5, MeOH). A 10-g sample of the base was dissolved in 100 ml of /-PrOH and neutralized by addn of 3.9 ml of coned HC1. The mixt was cooled to 5° and filtered to give, after drying, 8.0 g of $(+)$ -base-HCl, mp 293-295°, $[\alpha]^{25}D +19^{\circ}$ *(c* 0.5, H₂O). *Anal.* $(C_{15}H_{23}ClN_2O)$ Cl.

Kvapn of the resoln liquor and conversion of the residue to the base as above yielded 25 g of the crude enantiomer. This material was treated with 17 g of $(+)$ -tartaric acid in 400 ml of 95% EtOH, and the soln was kept several hr at 25° . A total of 30 g of salt, mp 83-85°, was isolated, and recrystn from 30 ml of H_2O at 5° gave 25 g of pure (+)-bitartrate, mp 100-101°. This salt was converted to base as above $(12.7 g)$ which by neutralization with coned HCl in *i*-PrOH gave 12.0 g of $(-)$ -base HCl, mp 293-295°, $[\alpha]^{25}D -18.6^{\circ}$ (c 5, H₂O). Anal. (C₁₃H₂ClN₂O) CI. A sample of the base prepd from this salt melted at 153-155°, $\frac{1}{26}$ $\frac{1}{26}$ + 63° (c. 5). MeOH).

Resolution of (±)-Bupivacaine.—A soln of 412 g (1.42 moles) of (\pm) -bupivacaine base and 216 g (1.44 moles) of $(+)$ -tartaric acid in 1500 ml of boiling i -PrOH was seeded and kept at 5° for 2 hr with occasional swirling. The heavy ppt was filtered, washed with *i*-PrOH, and dried to yield 200 g of nearly pure $(+)$ -base $f(t)$ -tartrate, mp 183-184°, unchanged by recrystn from i-PrOH. A 10.2-g portion of this salt was converted to base (dil NH4OH, H_2O , and Et_2O) to give 7.6 g or crude (+)-base, mp 128°. Recrystn from 30 ml of i -PrAcO gave 6.5 g pure $(+)$ -base, mp 135- 137° , $\lceil \alpha \rceil^{25}D + 81^\circ$ (c. 5, MeOH).

This base was dissolved in 50 ml of hot i -PrOH and neutralized by the addn of 2.3 ml of coned HCl. After evapn in vacuo the residue was crystd from 30 ml of i -PrOH to give 6.0 g of $(+)$ base HCl, mp^{258°}, [α]²⁵D +12.7° *(c* 2, H₂O). Anal. (C₁₅- $H_{24}CIN_2O$ C1, N.

The resoln liquor on standing at 25[°] with occasional scratching and swirling gave after 5 hr 400 g of crude ($-$)-bupivacaine ($+$)tartrate, mp $110-115^\circ$. This fraction was dissolved in 21. of H_2O and slowly basified with 28% NH₄OH, to ppt 250 g of (-)-rich base. Recrystn from 500 ml of i -PrOH gave 120 g, mp 132-134°, which was recrystd from 500 ml of /-PrOH to yield 109 g of pure $(-)$ -base, mp 135-137°, $\lceil \alpha \rceil p^{25}$ -80.9° (c.5, MeOH). Conversion to the HCl salt as described above for $(+)$ -base gave 110 g of (-)-base-HCl, mp 255-257°, $[\alpha]^{25}D -12.3^{\circ}$ (c 2, H₂O). Anal. $(C_{18}H_{24}CIN_2O)Cl, N.$

(A')-(— **)-2',6'-Pipecoloxylidide.**—To an EtMgBr soln, prepd from 1.4 g of Mg and 6.6 g of EtBr in 100 ml of dry Et_2O , was added dropwise 4.8 g of 2,6-xylidine with stirring during strong gas evoln. $(R)-(+)$ -Methyl pipecolate $(1.8 g)$ was added rapidly, and stirring was contd at room temp for 15 min followed by a 30min reflux period. The mixt was cooled to 25° and 100 ml of 1 N HCl was added slowly. The pH was adjusted to 5.5 by the addn of 10% NaOH soln. The Et₂O layer was sepd, and the aq layer was reextd with 100 ml of Et_2O . The combined Et_2O extracts contained the unreacted xylidine.

The aq portion was basified with excess NH₄OH, and the resulting $\overline{\text{Mg}}(\text{OH})_2$ slurry was extd twice with 100 ml of *i*-PrAcO. Evapn of the solvent *in vacuo* left a crystn residue which was recrystd from boiling hexane to give 0.7 g of (R) - $(-)$ -I, mp 130°; mmp with $(-)$ -I obtained by resoln was not depressed, and $[\alpha]^{25}$ D -46° (c 2.3, 1 N HCl) was in agreement with that of the latter.

 $(S)-(-)$ -Mepivacaine by N-Methylation of $(S)-(+)$ -I.-A soln of 4.6 g of $(S)-(+)$ -I with 4 ml of 40% formalin in 200 ml of abs EtOH was hydrogenated over 2 g of 10% Pd/C at 25° and 2.82 kg/cm² of H₂ to a 1-equiv H₂ uptake in 3 hr. After removal of catalyst and vacuum evapn of solvent, a eryst residue remained, which after recrvstn from boiling hexane gave 2.15 g of (S)-(-)-mepivacaine, mp 148-152° and α ²⁵D -62.3° (c 5, MeOH). This base (0.184 g) dissolved with 0.154 g of quinic acid in 2 ml of abs EtOH at boiling gave rapid crystn of the $(+)$ base quinate (0.31 g), mp $194-197^{\circ}$; mmp with the (+)-base quinate obtd by resoln was not depressed.

 (R) -(+)-Bupivacaine by N-Butylation of (R) -(-)-I.—A soln of 2.32 g of (R) -(-)-I and 2.0 g of n-BuBr in 25 ml of BuOH with 1.15 g of anhyd K_2CO_3 was stirred and heated under gentle. reflux for 18 hr. After filtration from inorganic salts, the BuOH was dist off in vacuo. The residue with 0.75 g $(+)$ -tartaric acid gave 2.8 g of (R) -(+)-bupivacaine-(+)-tartrate from 10 ml of boiling *i*-PrOH, mp 182-184°, characteristic of the $(+)$ -enantiomer which on conversion *via* base to the HCI salt gave 1.8 g of $\mathbb{I}(R)$ -(+)-base-HCl, mp 253-255°, $[\alpha]^{25}$ ^p +12.5° (c 2, H₂O); munp with HCI salt obtd by direct resoln was not depressed.

2-Aminoindan-2-carboxylic Acids. Potential Tyrosine Hydroxylase Inhibitors

ROGER M. PINDER,* BRIAN H. BUTCHER, DAVID A. BUXTON, AND DAVID J. HOWELLS

Chemical Defence Establishment, Porton Down, Salisbury, Wiltshire, England

Received March 12, 1971

Tyrosine hydroxylase is an important enzyme for control of catecholamine levels *in vivo,* since its catalysis of the conversion of L-tyrosine to L-dopa is the ratedetermining step in catecholamine biosynthesis.¹ . The most potent inhibitors of this enzyme are the α -Me aromatic amino acids,²⁻⁴ particularly close structural relatives of the natural substrate, such as $3-iodo-\alpha$ methyltyrosine (I). We have synthesized a series of 2-aminoindan-2-carboxylic acids (II), in which the α -Me group is incorporated into the indan ring, in an attempt to define the active site of tyrosine hydroxylase.

Nitration⁵ of the spirohydantoin III derived from indan-2-one. followed by catalytic reduction, gave the key intermediate, spiro(5-aminoindan)-2,5'-hydantoin (IV). Diazotization allowed introduction of a variety of 5 substituents, and the resulting hydantoins V were decomposed to the desired amino acids by the use of either coned HCI in a sealed tube at 160° or refluxing $aq Ba(OH)₂$.

In behavioral tests in rats, none of the compds in Table I affected spontaneous motor activity⁶ or conditioned avoidance responses,⁷ suggesting an absence of

(1) e Udenfriend, *Pharmacol. Rev.,* 18, 43 (1966). (2) T. Nagatsu, M. Levitt, and S. Udenfriend, *J. Biol. Chem.,* **239,** 2910 (1964); *Anal. Biochem.,* 9, 122 (1964).

(3) W. S. Saari, J. Williams, S. F. Britdher, D. E. Wolf, and F. A. Kuehl, *J. Med. Chem.,* 10, 1008 (1967); R. E. Counsell, P. Desai, T. D. Smith, P. S. Chan, P. A. Weinhold, V. B. Rethy, and D. Burke, ibid., 13, 1040 (1970).

(4) S. Udenfriend, P. Zaltzman-Nirenberg, and T. Nagatsu, *Biochem. Pharmacol,* 14, 837 (1965); E. G. McGeer and P. L. McGeer, *Can. J. Biochem.,* 45, 115 (1967); B. N. Lutsky and N. Zenker, *J. Med. Chem.,* 11, 1241 (1968).

(5) A. B. Mauger and W. C. J. Ross, *Biochem. Pharmacol,* 11, 847 (1962). (6) P. B. Dews, *Brit. J. Pharmacol,* 8, 46 (1953).

(7) R. W. Brimblecombe, in "Modern Trends in Toxicology," E. Boyland and R. Goulding, Ed., Butterworths, London, 1968, pp 149-174.